Adaptive Realized Kernels

نویسندگان

  • Marine Carrasco
  • Rachidi Kotchoni
چکیده

We design adaptive realized kernels to estimate the integrated volatility in a framework that combines a stochastic volatility model with leverage effect for the effi cient price and a semiparametric microstructure noise model specified at the highest frequency. Some time dependence parameters of the noise model must be estimated before adaptive realized kernels can be implemented. We study their performance by simulation and illustrate their use with twelve stocks listed in the Dow Jones Industrial. As expected, we find that adaptive realized kernels achieves the optimal trade-off between the discretization error and the microstructure noise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Econometric analysis of vast covariance matrices using composite realized kernels∗

We propose a composite realized kernel to estimate the ex-post covariation of asset prices. Composite realized kernels are a data efficient method where the covariance estimate is composed of univariate realized kernels to estimate variances and bivariate realized kernels to estimate correlations. We analyze the merits of our composite realized kernels in an ultra high dimensional environment, ...

متن کامل

New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels

We develop a new model for the multivariate covariance matrix dynamics based on daily return observations and daily realized covariance matrix kernels based on intraday data. Both types of data may be fat-tailed. We account for this by assuming a matrix-F distribution for the realized kernels, and a multivariate Student’s t distribution for the returns. Using generalized autoregressive score dy...

متن کامل

Application of Adaptive Mixtures and Fractal Dimension Analysis Technique to Particle Physics

The discrimination of physics “signal” from “background” is one of the most important subjects in high energy physics analysis since this process usually governs the magnitude of measurement errors. Background suppression using kernel density estimation to estimate the parent distribution of a data sample appears to be an effective method. In this paper, Adaptive Mixtures [1] and Kernel Density...

متن کامل

Approximation Networks Based on Shape-adaptive Kernels Using Localized Threshold Decomposition

Approximation networks combined with learning algorithms are being increasingly used to represent or approximate unknown mappings of multivariate functionals. Potential functions in general, and the subclass of radial basis functions (RBF), are examples of this approach where combinations of localized kernels are used to t the relatively sparse available observations. The kernels describe the l...

متن کامل

Automatic Generation and Adaptation of Numerical Kernels

Designing software that achieves peak performance on modern architectures is a difficult, expensive and often highly platform specific task. In this paper we discuss recent automatic adaptive optimization approaches to high-performance programming: ATLAS, FFTW, and SPIRAL. They are designed to eliminate hand-coding and hand-tuning for various numerical kernels. Further, we describe our own work...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011